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ABSTRACT Detecting the association between a set of variants and a given phenotype has attracted a large amount of attention in the
scientific community, although it is a difficult task. Recently, several related statistical approaches have been proposed in the literature;
powerful statistical tests are still highly desired and yet to be developed in this area. In this paper, we propose a powerful test that combines
information from each individual single nucleotide polymorphism (SNP) based on principal component analysis without relying on the
eigenvalues associated with the principal components. We compare the proposed approach with some popular tests through a simulation
study and real data applications. Our results show that, in general, the new test is more powerful than its competitors considered in this
study; the gain in detecting power can be substantial in many situations.
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WITH the innovations of biomedical and biochemical
technologies, largeamountsofgenetic sequencingdata

have been produced, providing researchers with great opportu-
nitiesto investigatethegeneticcontributionstosomephenotypes
such as cancers. Genome-wide association studies (GWASs)
have successfully identified thousands of single nucleotide poly-
morphisms (SNPs) that are associated with some common
diseases (Manolio et al. 2009; Chen and Ng 2012; Chen
2013; Chen et al. 2017b). However, most of those identified
SNPs from GWAS are variants with relatively high minor allele
frequencies (MAFs). Rare variants (e.g., SNPs with MAF,5%)
may play a critical role in disease development (Bodmer and
Bonilla 2008). Nevertheless, because of their low MAFs, rare
variants are usually removed fromdata analysis inGWASs. And,
even if they were included, current statistical methods designed
for GWASsmay have very limited power to detect the signal if
the sample sizes are not large enough. Instead of testing a
single variant a time, researchers have proposed statistical
approaches to detecting the possible association between a

set of variants and a phenotype. Recently, many statistical
methods have been designed specifically for gene-set or path-
way rare-variant data analysis (Li and Leal 2008;Madsen and
Browning 2009; Han and Pan 2010; Basu and Pan 2011; Lin
and Tang 2011; Wu et al. 2011, 2015; Yi and Zhi 2011; Lee
et al. 2012; Sha et al. 2012; Pan et al. 2014;Wang 2016; Chen
et al. 2017a; Chen and Wang 2017).

The sequencing kernel association test (SKAT) is among the
mostpopular rare-variantassociation testingmethods.TheSKAT
is essentially based on the principal component analysis (PCA).
More specifically, it calculates a test statistic fromeach individual
principal component of the covariance matrix of the genotype
data, and then takes the weighted sum of these statistics as the
overall test statistic, where theweights are the associated eigen-
values. The null distribution of the overall test statistic is a linear
combination of chi-square distributions, which can be approxi-
matedbyachi-squaredistribution(Davies1980;Liu et al.2009),
from which a P-value can be approximated.

The optimal sequencing kernel association test (SKAT-O) is a
weighted sum of the SKAT and a burden test, which assumes the
directions are the same and themagnitudes are similar among all
of the rare variants under study (Lee et al. 2012). Therefore, the
SKAT-O in general is more robust than the SKAT. However, like
theSKAT, theSKAT-O still uses the information fromeigenvalues.
In addition, both the SKAT and the SKAT-O require assigning
weigh to each variant (e.g., a function of MAF).
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The use of the eigenvalues as weights in the SKAT can be
beneficial if indeed the major principal components have
stronger association with the phenotype. However, if this
assumption is not met, the SKAT can potentially lose power
dramatically. In addition, assigning weights to variants can
be challenging. To circumvent these difficulties, in this paper,
we propose a new statistical association testing method for
rare-variant data analysis. This new test has some nice
properties, suchas simple formand computational efficiency.
To study the performance of the proposed approach, we
compare it with some popular methods. Our comparison
results show that the new test is more powerful than the
SKAT and SKAT-O tests under most of the situations studied.
Real data applications are also given to illustrate the use of
the new approach.

Methods

We use y ¼ ðy1; y2;⋯; ynÞ9 to denote phenotypes (either
qualitative or quantitative) of the n subjects in a study. As-
sume Xn3 p are the observations of p covariates from n sub-
jects, and Gn3 k are the k genotypes from n subjects, where
the (i,j) component of Gn3 k; gi;j ¼ 0; 1; or 2 if the number of
copies of the minor allele of the jth SNP from the ith subject is
zero, one, or two, respectively. Denote the standardized re-
siduals (i.e., the raw residual divided by its estimated SD)
z ¼ ðz1; z2;⋯; znÞ9 of y after adjusting for the p covariates
using a generalized linear model (e.g., a logistic regression
model for binary phenotype and ordinary linear regression
for conditions phenotype). Then, to detect the association
between the set of the k SNPs and the phenotype, we can
conduct an overall test between z and the genotypes.

Let l1 $ l2 $⋯$ ln $ 0 be the n eigenvalues of matrix
�GWW�G9; where �G is the centered G (i.e., each component is
subtracted by its column mean), W ¼ diagðw1;w2;⋯;wkÞ is
the weight matrix, and ui ¼ ðui1; ui2;⋯; uinÞ9 the eigenvector
associated with li (i ¼ 1; 2; . . . ; n). By default, the SKAT uses
wi ¼ dbetaðMAFi; 1; 25Þ; where dbetað�; a; bÞ is the density
function of a beta distribution with the two shape parameters
a  and  b; and MAFi is the MAF of the ith SNP, which can be
estimated from the data. Unless otherwise specified, in this
paper, we use the default weighting function for both of the
SKAT and the SKAT-O tests.

The SKAT statistic is asymptotically equivalent to the
following expression (Wu et al. 2011):

SKAT ¼ z9�GWW�G9z ¼
Xn
i¼1

li

�
z9ui

�2ð1Þ:

It is easy to see that, under the null hypothesis, none of the k
SNPs is associated with the phenotype, SKAT asymptotically
follows a linear combination of chi-square distributions,
Pn
i¼1

lix
2
i;1;where x2

i;1 are independently and identically distrib-

uted (iid) x2
1 distribution with degree of freedom (df) 1.

Alternatively, the test statistic SKAT can be rewritten as:

SKAT ¼ li

�
z9vi

�2ð2Þ;

where li is the ith nonzero eigenvalue ofW�G9�GW; vi is the ith
column of matrix �GW �UD; D is a k3 k diagonal matrix with
Dii ¼ li

21=2 if li 6¼ 0; 0 otherwise; and �U is the eigenvectors
matrix of W�G9�GW: It can be shown that the eigenvector ui
associated with nonzero eigenvalue li of �GWW�G9 can be cal-
culated as the corresponding vi defined above. In fact, let �ui
be the eigenvector associated with eigenvalue li of �G9 �G W
ði ¼ 1; 2;⋯; kÞ; then W�G9�GW�ui ¼ li�ui: The above defined

vi can be rewritten as vi ¼ �GW�ui=
ffiffiffiffi
li

p
for li 6¼ 0: Then,

�GWW�G9vi ¼ �GWW�G9�GW�uiffiffiffi
li

p ¼ li �GW�uiffiffiffi
li

p ¼ livi: This shows that vi is

the eigenvector associated with nonzero eigenvalue li: Use
the fact that the two sets of nonzero eigenvalues from con-
formable matrices AB (e.g., �GWW�G9) and BA (e.g., W�G9�GW)
are the same, the set of nonzero eigenvalues of flig are the
same as {li}. Therefore, both fvig are fuig are the sets of
eigenvectors associated with nonzero eigenvalues of �GWW�G’

;

and the equations in (1) and (2) are equivalent. However, ex-
pression (2) is preferred when k is smaller than n, as the com-
putation is more efficient in this situation. From (2), the
asymptotic null distribution of SKAT is a linear combination of

chi-square distributions,
Pk
i¼1

lix
2
i;1:

Fromeither (1)or (2),wecansee that theSKAT is actually a
weighted chi-square test with weights equal to the associated
eigenvalues. Therefore, the SKAT is sensitive to the eigenvalues;

Table 1 Empirical type I error rate (31=a) for each method using
significance levels a ¼ 1024;1025; and 106 replicates when there
are 5, 10, 20, 50, and 100 SNPs with 1000 cases and 1000 controls

r Test

#SNP

5 10 20 50 100

0 SKAT 1.04 1.07 0.89 0.86 1.00
1.1 1.5 0.7 0.4 1.2

SKATO 1.10 1.13 0.74 1.05 0.94
1.0 1.6 0.5 0.8 1.1

Burden 0.98 1.15 0.84 1.30 0.98
0.8 0.9 0.5 1.4 0.7

C 1.08 1.27 0.86 1.15 0.88
1.1 1.9 0.8 0.6 0.7

0.2 SKAT 1.0 1.21 0.98 0.64 0.85
1.5 1.3 1.4 0.6 1.0

SKATO 0.87 1.14 0.94 0.60 1.00
1.3 1.3 1.2 0.8 1.2

Burden 0.96 1.29 1.05 0.73 1.13
0.9 1.5 1.1 0.8 1.0

C 1.18 1.04 1.12 0.65 0.84
1.3 0.9 0.9 0.5 0.9

20.2 SKAT 0.98 1.02 0.88 1.06 0.70
1.8 1.0 0.7 1.3 0.8

SKATO 1.08 1.03 0.92 1.26 0.72
1.4 1.0 1.0 1.3 0.8

Burden 1.15 0.96 0.95 1.03 1.00
1.5 0.8 1.3 1.0 0.8

C 1.03 0.95 0.80 0.95 0.86
0.8 0.5 0.8 1.0 0.7
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its performance largelydependsonhowstrong themajor principal
components correlate with z compared with other principal com-
ponents. In the cases where the correlations between z and the
major principal components arenot stronger than thosebetween z
and other principal components, the SKAT may perform poorly.
Motived by this observation, we propose a robust test without
using eigenvalues. We use C to denote the new test statistic that
has the following expression.

C ¼
Xk
i¼1

�
z9vi

�2ð3Þ:

Itcanbeshownthattheabovenewtesthasthefollowingproperties.

Theorem 1

Under the null hypothesis, C asymptotically follows a chi-
square distribution with df ¼ k9; where k9 is the number of
nonzero eigenvalues of W�G9�GW:

Proof:Without loss of generality, we assume k ¼ k9: It is easy to
show that under the null hypothesis, asymptotically, z9vi follows
a normal distribution with mean 0 and variance 1, and the
covariance between z9vi and z9vj (i 6¼ j) is 0. Therefore,
ðz9viÞ2 ði ¼ 1; 2; . . . ; kÞ is asymptotically independently and
identically distributed as a x2

1:

Theorem 2

C is invariant of the weight W:

Proof: Suppose ui ði ¼ 1; 2;⋯; kÞ are the k eigenvectors of
�G9�G; denote U ¼ ½u1 u2 ⋯uk�; then we have U9�G9�GU ¼
L ¼ diagðl1; l2;⋯; lkÞ; where UU9 ¼ I; and I is the identity
matrix. In addition, we have WG9�GW ¼ VL1V9; where
L1 ¼ diagðlð1Þ1 ; l

ð1Þ
2 ;⋯; l

ð1Þ
k Þ and VV9 ¼ I; then U9W�G9

�GWU ¼ U9VL1V9U ¼ ðU9VÞL1ðU9VÞ9: Since ðU9VÞ ðU9VÞ9 ¼
U9VV9U ’ ¼ I; each column of matrixU9V is also the eigenvectors

of matrix W�G9�GW: Therefore, from (3), C ¼ Pk
i¼1

ðz9viÞ2 ¼ z9

ðP
k

i¼1
vivi9Þz ¼ z9ðP

k

i¼1
uiV9Vui9Þz ¼ z9ðP

k

i¼1
uiui9Þz:

According to Theorem 2, we can calculate the statistic C
without assigning weight to each SNP.

In the next section, wewill compare the proposed test with
the SKAT and the optimal SKAT (SKAT-O) through a simula-
tion study.

Data availability

Supplemental Material, File S1 contains Supplemental Ta-
bles based on simulation study and real data application. File
S2 is the R code of the proposed test.

Results

Simulation study

Simulation settings: In the simulation study,wemainly focus
on comparing the proposed test (C) with the sequencing ker-
nel association test (SKAT), the optimal sequencing kernel

Table 2 Empirical type I error rate (31=a) for each method using
significance levels a ¼ 1024; 1025; and 106 replicates when there
are 5, 10, 20, 50, and 100 SNPs with 2000 subjects and continuous
phenotypes

r Test

#SNP

5 10 20 50 100

0 SKAT 1.12 1.00 0.90 1.00 1.12
0.8 1.1 1.1 1.3 1.1

SKATO 0.98 1.09 0.93 1.01 1.09
1.0 1.7 0.9 1.2 1.00

Burden 0.85 1.00 1.11 1.05 1.35
0.8 0.7 1.3 0.7 1.3

C 0.97 1.01 0.78 1.06 0.93
0.6 1.0 0.9 0.8 1.2

0.2 SKAT 1.02 1.18 0.95 0.96 0.92
1.1 1.3 0.7 1.5 1.1

SKATO 1.02 0.82 1.15 0.96 0.92
1.1 0.6 1.0 1.1 0.5

Burden 0.94 1.00 1.03 1.01 0.93
1.1 0.9 0.7 0.9 0.8

C 0.88 1.22 0.93 1.00 0.98
0.6 1.2 1.2 0.9 0.9

20.2 SKAT 0.85 1.08 1.03 1.04 0.99
1.1 1.0 0.7 1.8 1.3

SKATO 0.80 0.93 0.89 1.06 1.02
0.3 1.1 0.4 0.8 0.5

Burden 1.22 0.93 0.97 1.14 0.78
1.2 0.9 1.8 0.1 0.6

C 1.02 0.98 1.07 0.82 1.17
0.9 1.1 1.2 0.7 1.1

Table 3 Empirical power of each method using significance levels
a ¼ 1024 and   1025 when there are 1000 cases, 1000 controls and
100 SNPs with 10% of those 100u causal SNPs are protective

r Test

(u;d)

(0.05,20.5) (0.1,20.4) (0.2,20.3) (0.4,20.2) (0.5,20.2)

0 SKAT 0.33 0.74 0.90 0.73 0.92
0.19 0.51 0.72 0.50 0.81

SKATO 0.24 0.71 0.88 0.90 0.99
0.17 0.04 0.74 0.77 0.95

Burden 0.00 0.11 0.35 0.73 0.96
0.00 0.44 0.21 0.61 0.91

C 0.96a 1.00a 1.00a 0.98a 1.00a

0.94a 0.99a 0.99a 0.96a 1.00a

0.2 SKAT 0.31 0.45 0.72 0.54 0.85
0.11 0.22 0.38 0.32 0.65

SKATO 0.29 0.43 0.66 0.48 0.81
0.11 0.22 0.37 0.27 0.62

Burden 0.00 0.00 0.04 0.04 0.30
0.00 0.00 0.01 0.01 0.17

C 0.99a 1.00a 1.00a 0.90a 0.96a

0.93a 0.98a 0.99a 0.79a 0.96a

20.2 SKAT 0.18 0.43 0.59 0.41 0.80
0.09 0.23 0.38 0.16 0.62

SKATO 0.14 0.39 0.49 0.35 0.80
0.07 0.20 0.34 0.16 0.59

Burden 0.00 0.00 0.01 0.08 0.44
0.00 0.00 0.00 0.03 0.26

C 1.00a 1.00a 1.00a 0.99a 0.99a

0.98a 0.99a 1.00a 0.90a 0.99a

a The highest power value for each comparison
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association test (SKAT-O), and the burden test. We use the
program, simRareSNP (http://www.biostat.umn.edu/�weip/),
provided by W. Pan to generate case-control rare-variant SNP
data. For the genotype data, we use a latent multivariate Gauss-
ian variable with compound symmetry (CS) as their covariance
structure. The correlation coefficient (r) in the CS takes different
values, e.g., r ¼ 0; 0:2; 20:2; in the simulation study. We sim-
ulate SNPs with MAFs ranging from 0.001 to 0.05.

To investigate how the new method controlling type I
error rate, we simulate 50 and 100 null SNPs, 1000 cases,
and 1000 controls. Using significance level 1024 and 1025,
we obtain the empirical type I error rate based on 106 repli-
cates. We also consider using 700 cases and 1300 controls.

To estimate the power value, we randomly select a pro-
portion (u) of 100 variants as causal SNPs, where u takes
values 0.05, 0.1, 0.2, 0.4, and 0.5. Following the simulation
settings as described in the SKAT paper, we assume the effect
size of each causal SNP is a function of MAF. Specifically, we
assume the magnitude of logarithmic relative risk (RR) of het-
erozygous to homozygous major genotypes is d3 log10ðMAFÞ;
with various values for d; 2 0:2; 2 0:3; 2 0:4; and2 0:5:
The logarithmic RR is very close to the logarithmic odds ratio
(OR), which was used with similar magnitudes for simulation
study in the SKAT paper, if the disease prevalence is low. Of
those causal SNPs, we randomly assign 10, 50, and 90% as
protective variants, and the rest are risk variants. The commonly
used log-additive genetic model is assumed in the simulation.
The genotype frequencies of cases can be determined by those
of controls and the relative risks of heterozygous and

homozygous minor to homozygous major (Chen et al.
2012, 2014a, 2016a; Chen and Ng 2012; Chen 2014). Spe-
cifically, if the genotype frequencies of homozygous minor,
heterozygous, and homozygous major are p0, p1 and p2 (q0,
q1, and q2), respectively, for controls (cases), and the relative
risks of heterozygous and homozygous minor to homozygous
major are r1 and r2, then we have the following relationships.

8>>>>>>>><
>>>>>>>>:

q0 ¼ p0
p0 þ r1p1 þ r2p2

q1 ¼ r1p1
p0 þ r1p1 þ r2p2

q2 ¼ r2p2
p0 þ r1p1 þ r2p2

ð4Þ:

We then consider continuous phenotypes. We use the same
procedure as described above to generate genotype data for
2000 subjects. For phenotype, we randomly select a por-
tion (u) of SNPs as casual variants with 10, 50, and 90%
of them having positive effects. The effect for the jth causal
SNP is set as bj ¼ signðbjÞ3 d3 log10ðMAFjÞ;where signðbjÞ
takes 1 (21) with probability 0.1 (0.9), 0.5 (0.5), and 0.9
(0.1), and d takes different values 20.25, 20.2, 20.15,
and 20.1 (i.e., half of the d values for the above case-
control situations). For the ith subject, the phenotype is

yi ¼
Pk
j¼1

bjgij þ ei; where gij is the genotype (0, 1, or 2) and ei

are independently and identically distributed as the standard
normal distribution.

Table 4 Empirical power of each method using significance levels
a ¼ 1024 and   1025 when there are 1000 cases, 1000 controls and
100 SNPs with 50% of those 100u causal SNPs are protective

r Test

(u;d)

(0.05,20.5) (0.1,20.4) (0.2,20.3) (0.4,20.2) (0.5,20.2)

0 SKAT 0.43 0.75 0.86 0.77 0.91
0.27 0.59 0.71 0.47 0.81

SKATO 0.33 0.66 0.80 0.59 0.85
0.24 0.48 0.55 0.35 0.72

Burden 0.00 0.00 0.01 0.00 0.02
0.00 0.00 0.00 0.00 0.01

C 0.83a 0.98a 0.99a 0.97a 1.00a

0.76a 0.90a 0.99a 0.95a 0.99a

0.2 SKAT 0.17 0.47 0.71 0.56 0.87
0.05 0.23 0.41 0.43 0.72

SKATO 0.15 0.44 0.68 0.51 0.83
0.05 0.22 0.41 0.38 0.66

Burden 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

C 0.79a 0.99a 1.00a 0.97a 1.00a

0.70a 0.93a 0.99a 0.90a 0.99a

20.2 SKAT 0.22 0.45 0.59 0.49 0.77
0.10 0.26 0.38 0.28 0.48

SKATO 0.19 0.38 0.54 0.39 0.71
0.09 0.21 0.30 0.19 0.38

Burden 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

C 0.97a 1.00a 1.00a 0.99a 1.00a

0.87a 0.99a 0.98a 0.96a 1.00a

a The highest power value for each comparison

Table 5 Empirical power of each method using significance levels
a ¼ 1024 and   1025 when there are 1000 cases, 1000 controls and
100 SNPs with 90% of those 100u causal SNPs are protective

r Test

(u;d)

(0.05,20.5) (0.1,20.4) (0.2,20.3) (0.4,20.2) (0.5,20.2)

0 SKAT 0.33 0.72 0.88 0.83 0.94
0.18 0.51 0.71 0.62 0.77

SKATO 0.29 0.68 0.89 0.94 0.99
0.13 0.36 0.78 0.90 0.99a

Burden 0.02 0.08 0.53 0.88 0.99
0.00 0.03 0.36 0.76 0.95a

C 0.49a 0.85a 0.95a 0.95a 1.00
0.30a 0.73a 0.87a 0.81a 0.91

0.2 SKAT 0.25 0.55 0.70 0.49a 0.80a

0.05 0.32 0.43 0.26a 0.59a

SKATO 0.18 0.51 0.67 0.43 0.77
0.05 0.30 0.43 0.21 0.51

Burden 0.00 0.00 0.02 0.05 0.23
0.00 0.00 0.00 0.01 0.10

C 0.49a 0.75a 0.85a 0.34 0.58
0.27a 0.50a 0.63a 0.22 0.46

20.2 SKAT 0.38 0.51 0.60 0.50 0.83
0.20 0.27 0.43 0.28 0.57

SKATO 0.35 0.46 0.56 0.48 0.84
0.18 0.24 0.38 0.26 0.60

Burden 0.00 0.02 0.04 0.13 0.54
0.00 0.00 0.01 0.03 0.33

C 0.55a 0.85a 0.92a 0.69a 0.88a

0.40a 0.76a 0.84a 0.52a 0.72a

a The highest power value for each comparison
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Simulation results: Table 1 reports the relative empirical
type I error rates (empirical rate to the preset type I error
rate) for all methods included in the comparison. It shows
that under various conditions, all methods controlled type I
error rate well. Table 3, Table 4, and Table 5 give the empir-
ical power values (the highest power value is highlighted for
each comparison) from each test when 1000 cases and
1000 controls were simulated, with the proportion of pro-
tective causal variants being 10, 50, and 90%, respectively.
We observe the following patterns. First, when the SNPs are
independent (i.e., r ¼ 0), all methods have higher power
values compared with the situations when the SNPs are not
independent (i.e., r ¼ 0:2; or 2 0:2). Second, as expected,
when u (the proportion of causal variants) increases while
d fixed (e.g., d ¼ 2 0:2 and u ¼ 0:4 and 0:5), the power in-
creases for each method. Third, for most of the conditions, the
proposed test has the largest empirical power values. In addi-
tion, the power gain of the new test over the SKAT and the
SKAT-O tests are substantial under many scenarios.

For the situations where the phenotypes are simulated as
continuous variables, Table 2 reports the type I error rate for
eachmethod. It shows that all of themethods can control type I
error rate well. Table 6, Table 7, and Table 8 give the empirical
power values for each method under various conditions. From
the simulation results, we have similar observations as those
from the case-control situations. As suggested by one reviewer,
we also considered many other situations, including (1) differ-
ent numbers of cases and controls, (2) various number of SNPs,

(3) keep d the same value while let u vary, (4) effect sizes are
independent of MAF, and (5) all SNPs have the same MAF
value. The simulation results can be found from File S1 . In
general, we observed similar patterns as those from Table 1,
Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8.

Real Data Applications

In this section, first, we use the Genetic Analysis Workshop
17(GAW17)datatodemonstrate theapplicationof theproposed
method. The GAW17 uses the information of a subset of genes
with sequencing data available in the 1000 Genomes Project. In
GAW17, SNPs from gene ELAVL4 influence the simulated quan-
titative phenotype Q1; and gene VNN1 is associated with the
simulated quantitative phenotypeQ2. Except for the genetic risk
factors, bothQ1andQ2were also assumed tobe associatedwith
some covariates, such as age, gender, and smoking status. For
each gene, the phenotype (Q1 or Q2 values) was simulated
200 times in theGAW17data set; therefore, 200 P-values can be
obtained by each method. We use a linear regression model to
account for the effects of those nongenetic factors first, then
applied our proposed test, along with SKAT, SKAT-O, and the
burden test, to the standardized residuals obtained from the
regression.

Figure 1 and Figure 2 plot the2log10(P-values) obtained
by those methods from genes ELAVL4 and VNN1, respec-
tively. These plots clearly show that the proposed test pro-
duced smaller P-values compared to SKAT, SKAT-O, and the
burden test, for most cases. This indicates that the proposed

Table 6 Empirical power of each method using significance levels
a ¼ 1024 and  1025 when there are 2000 subjects with continuous
phenotypes and 100 SNPs with 10% of those 100u causal SNPs
having positive effects

r Test

(u;d)

(0.05,20.25) (0.1,2020 (0.2,20.15) (0.4,20.10) (0.5,20.10)

0 SKAT 0.54 0.76 0.81 0.84 0.93
0.33 0.50 0.69 0.63 0.80

SKATO 0.42 0.69 0.85 0.93 1.00
0.23 0.45 0.71 0.88 0.99

Burden 0.01 0.08 0.37 0.79 0.98
0.01 0.01 0.23 0.65 0.95

C 0.81a 0.98a 0.99a 1.00a 1.00
0.62a 0.97a 0.95a 0.93a 0.99

0.2 SKAT 0.81 0.98 1.00 1.00 1.00
0.67 0.95 0.99 1.00 1.00

SKATO 0.81 0.98 1.00 1.00 1.00
0.67 0.95 0.99 1.00 1.00

Burden 0.54 0.88 0.98 1.00 1.00
0.41 0.86 0.98 1.00 1.00

C 0.88a 1.00a 1.00 1.00 1.00
0.75a 0.98a 1.00 1.00 1.00

20.2 SKAT 0.74 0.93 0.99 1.00 1.00
0.62 0.91 0.99 1.00 1.00

SKATO 0.76 0.94 0.99 1.00 1.00
0.64 0.91 0.99 1.00 1.00

Burden 0.47 0.82 0.98 1.00 1.00
0.34 0.76 0.98 1.00 1.00

C 0.97a 1.00a 1.00a 1.00 1.00
0.89a 0.99a 1.00a 1.00 1.00

a The highest power value for each comparison

Table 7 Empirical power of each method using significance levels
a ¼ 1024 and   1025 when there are 2000 subjects with continuous
phenotypes and 100 SNPs with 50% of those 100u causal SNPs
having positive effects

r Test

(u;d)

(0.05,20.25) (0.1,2020 (0.2,20.15) (0.4,20.10) (0.5,20.10)

0 SKAT 0.45 0.77 0.85 0.80 0.90
0.31 0.61 0.70 0.61 0.79

SKATO 0.44 0.68 0.76 0.69 0.87
0.26 0.55 0.56 0.44 0.73

Burden 0.00 0.01 0.00 0.01 0.00
0.00 0.01 0.00 0.00 0.00

C 0.85a 0.98a 1.00a 0.95a 1.00a

0.74a 0.92a 0.96a 0.92a 0.99a

0.2 SKAT 0.39 0.63 0.82 0.69 0.83
0.20 0.33 0.52 0.50 0.62

SKATO 0.37 0.60 0.78 0.65 0.83
0.20 0.33 0.52 0.49 0.61

Burden 0.11 0.15 0.22 0.15 0.15
0.07 0.11 0.14 0.06 0.11

C 0.79a 0.90a 1.00a 0.98a 1.00a

0.58a 0.83a 0.99a 0.94a 0.98a

20.2 SKAT 0.40 0.52 0.67 0.56 0.75
0.29 0.38 0.46 0.35 0.58

SKATO 0.36 0.51 0.64 0.51 0.71
0.26 0.36 0.44 0.28 0.56

Burden 0.06 0.16 0.11 0.08 0.10
0.03 0.07 0.06 0.05 0.06

C 0.90a 0.96a 1.00a 0.99a 1.00a

0.76a 0.95a 1.00a 0.98a 0.99a

a The highest power value for each comparison
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test is more powerful than its competitors. For some situa-
tions, the improvements of the newmethod were substantial.

We then applied the newmethod, alongwith others, to the
ocular hypertension treatment study (OHTS) data (Gordon
and Kass 1999). OHTS is a National Eye Institute-sponsored
multi-center, randomized clinical trial. Its goal is to investi-
gate the efficacy of medical treatment in delaying or prevent-
ing the onset of primary open angle glaucoma (POAG) in
individuals with elevated intraocular pressure. This data set
includes 249 non-Hispanic Black individuals between 40 and
80 years old were enrolled and genotyped in a subsequent
study. Data for this genetic study is available at Database
of Genotypes and Phenotypes (dbGaP, Study Accession
phs000240.v1.p1). There were 1,051,295 genotyped SNPs.
The HGNC gene symbols were obtained using the R/Biocon-
ductor package biomaRt (version 2.26.1). There are 30,562
autosomal genes. Genes that contain more than two SNPs
were excluded from further consideration.

In this application,wewant todetect theassociationbetween
each gene and the outcome central corneal thickness (CCT),
which is used to assess POAG in this study. After adjusting for
covariates age and gender using a linear regression, the stan-
dardized residues from the regression analysis are used for the
association tests. Table 9 reports the P-values obtained by SKAT,
SKAT-O, the burden test, and the proposed method for genes
with the smallest P-value from the four methods,1:03 1025:

For the two identified genes, theP-values from the proposed test
are both ,1:03 1025; while the P-values from others are
all .0.05. More information about the two genes is included
inTable S26 in File S1.However, to confirm the true association,
the genes listed need further investigation.

Table 8 Empirical power of each method using significance levels
a ¼ 1024 and   1025 when there are 2000 subjects with continuous
phenotypes and 100 SNPs with 90% of those 100u causal SNPs
having positive effects

r Test

(u;d)

(0.05,20.25) (0.1,2020 (0.2,20.15) (0.4,20.10) (0.5,20.10)

0 SKAT 0.55 0.70 0.83 0.76 0.90
0.34 0.56 0.69 0.55 0.78

SKATO 0.45 0.69 0.90 0.95 0.99
0.25 0.48 0.73 0.86 0.97

Burden 0.02 0.13 0.44 0.80 0.95
0.02 0.04 0.27 0.63 0.90

C 0.84a 0.96a 0.99a 0.99a 1.00a

0.69a 0.92a 0.97a 0.93a 1.00a

0.2 SKAT 0.83 0.98 1.00 1.00 1.00
0.76 0.96 1.00 1.00 1.00

SKATO 0.83 0.97 1.00 1.00 1.00
0.76 0.96 1.00 1.00 1.00

Burden 0.63 0.92 0.99 1.00 1.00
0.52 0.87 0.99 1.00 1.00

C 0.89a 1.00a 1.00 1.00 1.00
0.82a 0.99a 1.00 1.00 1.00

20.2 SKAT 0.75 0.98 1.00 1.00 1.00
0.57 0.95 1.00 1.00 1.00

SKATO 0.82 0.99 1.00 1.00 1.00
0.63 0.94 1.00 1.00 1.00

Burden 0.59 0.89 1.00 1.00 1.00
0.38 0.85 0.99 1.00 1.00

C 0.96a 1.00a 1.00 1.00 1.00
0.87a 1.00a 1.00 1.00 1.00

a The highest power value for each comparison

Figure 1 2log10(P-value) obtained by the pro-
posed test, SKAT, SKAT-O, and the burden test
from gene ELAVL4.
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Discussion and Conclusion

Due to the complex relationships among the set of SNPs, rare-
variant association testing is a difficult task. Recently, in this
area, many statistical approaches have been proposed in the
literature; however, none of them is uniformlymost powerful.
Robust yet powerful statistical methods are still highly desir-
able. The popular SKAT method is based on PCA analysis and
uses eigenvalues as weights when it combines information
obtained from each individual principal component. Indeed,
under the assumption that the major principal components
tend to have stronger associations with the phenotype, the
SKAT have decent detecting power. However, it should be
pointed out that the weights (eigenvalues) are completely
determined by the genotype data; there is no guarantee that
the aforementioned assumption is met in practice. Under
some situations, it is possible that the minor principal com-
ponents will have stronger relationship with the phenotype
(Aschard et al. 2014). If this is the case, the SKAT will be less
powerful. For example, for the gene “HCRT” in the real
data application, we found that the four eigenvalues are 899,
0.29, 1.4e207, and 3.9e209 with associated z-statistics
(z9vi) 21.76, 24.23, 3.00, and 20.61, respectively. Obviously,
using eigenvalues as the weights in the SKAT and SKAT-O tests
results in large P-values. However, the proposed test has better
performance under this situation. To circumvent this difficulty,
we proposed a robust approach, which does not assume any
relationship between the strength of association and the eigen-
values. Another disadvantage of the SKAT and the SKAT-O is the

difficulty to estimate the P-value (Wu et al. 2016). In contrast,
the P-value from the proposed test can be easily calculated using
a standard chi-square distribution.

Our proposed test can actually be viewed as a P-value
(statistic) combining method (Chen 2011, 2013, 2017;
Chen and Nadarajah 2014; Chen et al. 2014b, 2016b). Each
summand, ðz9viÞ2ði ¼ 1; 2; . . . ; kÞ; in (3) is asymptotically iid
x2
1 under the null hypothesis. Therefore, we can calculate

each individual P-value and then combine those asymptotic
independent P-values using some appropriate method. The
overall P-value calculated from (3) is equivalent to the
method we studied before (Chen and Nadarajah 2014).
Other P-value combing methods, such as Fisher test (Fisher
1932), can also be applied. In addition, if we have any prior
information, more powerful P-value combining methods can
be constructed accordingly. However, much more research is
needed to investigate under which situations, which P-value
combining methods are more powerful.

In summary, theproposedtest is simpleandrobust.Througha
comprehensivesimulationstudy,wefindthat theproposedtest is
more powerful than the SKAT and the SKAT-O tests undermany

Figure 2 2log10(P-value) obtained by the pro-
posed test, SKAT, SKAT-O, and the burden test
from gene VNN1.

Table 9 Genes in the black samples of OHTS data with smallest
P-value <1:031025 from the four methods

Chromosome Gene SKAT SKATO Burden New

17 HCRT 7:773 1022 6:653 1022 6:603 1022 4:1731026

17 GHDC 7:803 1022 7:803 1022 7:803 1022 4:5431027
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situations. The newmethod provides alternative or supplemen-
taryapproachtorare-variantassociationtesting.Finally, it should
be pointed out that like the SKAT and the SKAT-O tests, we can
use different kernels (e.g., linear or quadratic) in the proposed
approach without any additional difficulty.
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